\begin{tabbing} SESAxioms\{i:l\}($E$;$T$;${\it pred?}$;${\it info}$;${\it when}$;${\it after}$;${\it time}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=(\=$\forall$$e$:$E$, $l$:IdLnk.\+\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex]($\forall$${\it e''}$:$E$. \\[0ex]($\uparrow$rcv?(${\it e''}$)) \\[0ex]$\Rightarrow$ (sender(${\it e''}$) = $e$) \\[0ex]$\Rightarrow$ (link(${\it e''}$) = $l$) \\[0ex]$\Rightarrow$ (((${\it e''}$ = ${\it e'}$) $\vee$ ${\it e''}$ $<$ ${\it e'}$) \& loc(${\it e'}$) = destination($l$)))) \-\-\\[0ex]\& (\=(($\forall$$e$, ${\it e'}$:$E$. (loc($e$) = loc(${\it e'}$)) $\Rightarrow$ (${\it pred?}$($e$) = ${\it pred?}$(${\it e'}$)) $\Rightarrow$ ($e$ = ${\it e'}$))\+ \\[0ex]\& SWellFounded(pred!($e$;${\it e'}$)) \\[0ex]\& ($\forall$$e$:$E$. ($\neg$($\uparrow$first($e$))) $\Rightarrow$ (loc(pred($e$)) = loc($e$))) \\[0ex]\& ($\forall$$e$:$E$. ($\uparrow$rcv?($e$)) $\Rightarrow$ (loc(sender($e$)) = source(link($e$)))) \\[0ex]\& (\=$\forall$$e$, ${\it e'}$:$E$.\+ \\[0ex]($\uparrow$rcv?($e$)) \\[0ex]$\Rightarrow$ ($\uparrow$rcv?(${\it e'}$)) \\[0ex]$\Rightarrow$ (link($e$) = link(${\it e'}$)) \\[0ex]$\Rightarrow$ sender($e$) $<$ sender(${\it e'}$) \\[0ex]$\Rightarrow$ $e$ $<$ ${\it e'}$)) \-\\[0ex]c$\wedge$ \=($\forall$$e$:$E$.\+ \\[0ex]($\neg$($\uparrow$first($e$))) \\[0ex]$\Rightarrow$ \=($\forall$$x$:Id, $t$:$\mathbb{Q}$.\+ \\[0ex]${\it when}$($x$,$e$,$t$) = ${\it after}$($x$,pred($e$),$t$ + ((${\it time}$($e$)) {-} (${\it time}$(pred($e$)))))))) \-\-\-\- \end{tabbing}